Home » Blog » Technical Printing: Qualification Procedures

Technical Printing: Qualification Procedures

The-Rail-Industry-and-Boyd-Solutions

Last updated Sep 3, 2024 | Published on Feb 18, 2021

Technical printing projects go through several qualification procedures before moving to full production.

In the final blog of our three-part series on technical printing, we will discuss the qualification procedures that technical printing projects endure.

In the last blog, we described the five phases of development for technical printing projects. Once that process is complete and stable, the project goes through qualification procedures as it moves on to production. Boyd carefully applies these procedures with technical printing projects, especially those belonging to highly regulated industries such as aerospace and medical.

There are three qualifications that projects must pass during production to be validated as parts ready to sell:

Installation Qualification (IQ)

Correct installation of machinery is vital because if the equipment isn’t properly installed, the parts it produces won’t be viable. IQ is typically conducted for new pieces of equipment purchased for a particular job. This involves testing the equipment and understanding the ins and outs of how it works. One of the most important factors when conducting IQ is learning the equipment’s variability when being used so we know the accuracy of the machine. With technical printing projects, only so much variability is allowed, and the variance of the equipment used must be carefully considered during production. If the piece of equipment has been used before, past qualification tests can be referenced.

Operation Qualification (OQ)

This process is to ensure that variables and critical operational parameters are held constant throughout production. In the previous blog, we described the initial development process that technical printing projects go through when moving from concept to production. OQ is all about understanding variability in our operation processes and how to maintain consistency during large-scale production. This is essentially development on the production level, requiring testing of many variables to gain a better understanding.

Since technically printed parts belong to pieces of equipment like medical devices, many variables must be controlled strictly, such as drying temperature, ink dispensing, ink thickness, and substrate materials. During OQ, the parameter windows are set with a minimum and maximum level of variances allowed, and it is critical to stay within these throughout production. For example, once we know the optimal temperature at which the ink will cure, the optimal thickness of the ink, and which substrate material is best for the ink to adhere to, we can move forward with production knowing the variables will be held constant at the appropriate level.

Production Qualification (PQ)

Production qualification is testing our production processes and the materials used when we manufacture parts (our suppliers’ control parameters). Since technically printed parts belong to highly regulated industries, we must make sure the substrates, dielectrics, carbons, silvers, and other materials are without defect and that our production processes are keeping the many variables in the middle of their parameter window. This process is done by doing three different runs/setups with different lots of materials during initial production. Once the parts are produced, each lot is examined to make sure it falls within the tight parameter windows. If it doesn’t, a root-cause analysis is conducted to determine whether the failure was due to poor materials, an issue with production setup, or another factor. This process is a final review that ensures that by the time the part is completed, it will be ready for the customer.

Since technically printed parts belong to highly regulated industries, they often go through this process when initially setting up for production. Boyd employs an expert team of quality control inspectors and quality engineers and utilizes IQ, OQ, PQ processes to ensure quality and repeatability throughout production.

To learn more about technical printing, check out the other blogs from this series:

Related Posts

Inverter Cooling

Inverter Cooling

Cooling the EV Revolution Inverters are vital components of EVs and rely heavily on thermal management systems to...

Friction Stir Welding

Friction Stir Welding

What is Friction Stir Welding? Friction stir welding (FSW) is a solid-state process that uses a non-consumable tool to...

Dip Brazing

Dip Brazing

Aluminum Dip Brazing: Strong, Efficient, and Cost-Effective Joining Dip brazing offers numerous benefits. Each project...

You Might Also Like

Inverter Cooling

Cooling the EV Revolution Inverters are vital components of EVs and rely heavily on thermal management systems to...

Friction Stir Welding

What is Friction Stir Welding? Friction stir welding (FSW) is a solid-state process that uses a non-consumable tool to...

Have questions? We’re ready to help!